Derangements in cosets of primitive permutation groups
نویسندگان
چکیده
منابع مشابه
Prime order derangements in primitive permutation groups
Let G be a transitive permutation group on a finite set Ω of size at least 2. An element of G is a derangement if it has no fixed points on Ω. Let r be a prime divisor of |Ω|. We say that G is r-elusive if it does not contain a derangement of order r, and strongly r-elusive if it does not contain one of r-power order. In this note we determine the r-elusive and strongly r-elusive primitive acti...
متن کاملDerangements in Simple and Primitive Groups
We investigate the proportion of fixed point free permutations (derangements) in finite transitive permutation groups. This article is the first in a series where we prove a conjecture of Shalev that the proportion of such elements is bounded away from zero for a simple finite group. In fact, there are much stronger results. This article focuses on finite Chevalley groups of bounded rank. We al...
متن کاملDerangements and p-elements in permutation groups
2. (Jordan) A transitive permutation group of degree n > 1 contains a derangement. In fact (Cameron and Cohen) the proportion of derangements in a transitive group G is at least 1/n. Equality holds if and only if G is sharply 2transitive, and hence is the affine group {x 7→ ax + b : a, b ∈ F, a 6= 0} over a nearfield F. The finite nearfields were determined by Zassenhaus. They all have prime po...
متن کاملDistinguishing Primitive Permutation Groups
Let G be a permutation group acting on a set V . A partition π of V is distinguishing if the only element of G that fixes each cell of π is the identity. The distinguishing number of G is the minimum number of cells in a distinguishing partition. We prove that if G is a primitive permutation group and |V | ≥ 336, its distinguishing number is two.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Group Theory
سال: 2015
ISSN: 1433-5883,1435-4446
DOI: 10.1515/jgth-2014-0030